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Background and motive



1 Background and motive

» The input data will influence the accuracy
of hydrological output results.

» Spatial and temporal distribution of rainfall
iInfluence the hydrological behavior of the
model.
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Fig. Hydrological processes simulated by SWAT model
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1 Background and motive

» Spatial interpolation of rainfall at ground-based
gauges are regarded as watershed areal rainfall.

» The true distribution of precipitation can’t be
represented well by point rainfall.

» The rain gauge network should be well designed.

» The information entropy can be used in rain
gauge network optimization.

The distribution of the annual precipitation in the CW
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Fig. The distribution of annual precipitation, interpolated by
King’s method.
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1 Background and motive
»Entropy: the mathematical foundation for
measuring information or uncertainty. H(Z)
HX.Y) (XY H(X.Y.Z
>En’[l’0py—based methOdS can. H(X) H(Yy HiX) H(()) )The first row shc:wsthej)oint

1) directly define the optimization deployment entropy of variables X and ¥ mutua
iInformation of the rain gauge network and Y, and joint entropy of variables
. . X, Y, and Z. The second row shows
2) quantlfy the uncertalnty' HZ) H(Z) mutual information between

variables X, Y and Z, and the total

» The key to the design and optimization station 7<t.r-2  C(X.\Y.2) cortelation between variables X, ¥
an .

network- Fig. The relationship between binary and multivariate joint entropy H,

1) hOW much information iS Contained in one or mutual information T, and total correlation C.
several stations;

2) how much information can be transmitted
from one or more stations to other stations:

3) how much information is shared among
sev%al stations.
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1 Background and motive 4 (A0
»Entropy: the mathematical foundation for ' | .
measuring information or uncertainty. H(Z)
H(X.Y) XY H(X.Y.Z)

» Entropy-based methods can:

. _ o _ H(X) H(Yy HX) H(Y) The first row shows the joint
1) directly define the optimization deployment enitropy of variables X and f, murua
iInformation of the rain gauge network and Y, and joint entropy of variables
. . X, Y, and Z. The second row shows
2) quantlfy the Uncerta|nty. HZ) H(Z) mutual information between

variables X, Y and Z, and the total

» The key to the design and optimization station 7(<x¥>2)  C(X.Y.2) correlation between variables X, ,
an .

network- Fig. The relationship between binary and multivariate joint entropy H,

1) hOW much information iS Contained in one or mutual information T, and total correlation C.

several stations: measure the

2) how much information can be transmitted between rain gauges

from one or more stations to other stations; evaluate whether the information is
3) how much information is shared among

SeV%al stations. The step to optimize subsequently the rain gauge

gauge network. network



1 Background and motive

The study area (Chabagou Watershed) is in the Loess Plateau of China, where:
»water resources are scarce and rainfall is concentrated and unevenly distributed
»flash floods are very common

»the topography of the watershed is complex

»the economy is not well developed
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Fig. The location of the study area



1 Background and motive

The study area (Chabagou Watershed) is in the Loess Plateau of China, where:

»water resources are scarce and rainfall is concentrated and unevenly distributed
»flash floods are very common

»the topography of the watershed is complex

»the economy Is not well developed v——
“@t China /ﬂ:‘j.;\mi“\’-\“"ll-,‘_‘
S PRl N _

ot 2w oo T g (1) to understand the distribution of the annual

precipitation and information entropy of the
CW;

(2) to optimize the rain gauge network by
using the MIMR based on the information

entropy and evaluate the optimized rain
gauge network;

(3) evaluate the impact of the different rain
gauge networks on simulating the
watershed hydrology via the SWAT model.

Fig. The location of the study area
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2.1 Study area »Located in Shaanxi Province In
Northwest China.
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Northwest China.

» The drainage area of the CW is 205
- km”2.

e " > Climate type: arid and semi-arid
., continental monsoon climate.

» Features less rainfall and more
sunshine.

»Rainfall period is June to September,
accounting for about 70% of the annual
precipitation .

,,:/ »Annual average rainfall s 450 mm
17 »Annual average runoff is 3684900 m"3

2.1 Study area »Located in Shaanxi Province In
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Fig. The study area
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: »Climate type: arid and semi-arid

»Located in Shaanxi Province In
Northwest China.

»The drainage area of the CW is 205

km”2.

continental monsoon climate.

& ! >Features less rainfall and more

sunshine.

»Rainfall period is June to September,
accounting for about 70% of the annual
precipitation .

»Annual average rainfall is 450 mm
»Annual average runoff is 3684900 m”3

»Mainly soll type is loess soil, which has
a soft structure and is easy to be eroded

» Cropland is the dominant Iand-u§le type



2.2 method

Calculate the joint entropy

of every gauges
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2.21 method Entropy

Describe the degree of discreteness and uncertainty of a random
Marginal entropy

uncertainty.

variable X, where higher discreteness corresponds to greater
HOO=KY p(x)l0g, p(x)

* kis an arbitrary positive constant, and in this study, we take k=1.
* The dimension of entropy varies with the base b used, with bit (Binary
Digit) being the dimension when b=2, nat (Natural Digit) being the
L":.':S“.,m.u.u. dimension when b=e (natural logarithm base), and dit (Decimal Digit)
being the dimension when b=10. In this study, we use b=2.



2.21 method

Marginal entropy

Entropy

Describe the degree of discreteness and uncertainty of a random
variable X, where higher discreteness corresponds to greater
uncertainty.

H(X ):-kzn: p(x)log, p(x)

Joint entropy

* For a multidimensional random variable, joint entropy Is defined
as a measure of the total information retained by the variables.
« By extending the concept to two random variables, the total
|t|)1 orrbnta_tlondretalned by a multidimensional random variable can
e obtained.

HX,Y)=-3 p(x.y;)10g, p(X.y;)
i=1

* kis an arbitrary positive constant, and in this study, we take k=1.

* The dimension of entropy varies with the base b used, with bit (Binary
Digit) being the dimension when b=2, nat (Natural Digit) being the
dimension when b=e (natural logarithm base), and dit (Decimal Digit)
being the dimension when b=10. In this study, we use b=2. 13




2.21 method

Marginal entropy

Entropy

Describe the degree of discreteness and uncertainty of a random
variable X, where higher discreteness corresponds to greater
uncertainty.

H(X ):-kzn: p(x)log, p(x)

Joint entropy

For a multidimensional random variable, joint entropy Is defined

as a measure of the total information retained b

the variables.

By extending the concept to two random variables, the total
iInformation retained by a multidimensional random variable can

be obtained.

HX,Y)=-3 p(x.y;)10g, p(X.y;)
i=1

Mutual information
T(X,Y)=

p(x%.Y;)
- .y log, J
2.2, POy )log; Tences

T(X,Y)=H(X)+H()-H(X,Y)

Mutual information
describes the amount
of shared information
between two random
variables, and its
magnitude reflects the
degree of correlation
between the variables.
It IS superior to
Pearson correlation
coefficient. _

It captures both linear
and nonlinear
dependencies.

» kis an arbitrary positive constant, and in this study, we take k=1.
» The dimension of entropy varies with the base b used, with bit (Binary

Digit) being the dimension when b=2, nat (Natural Digit) being the
dimension when b=e (natural logarithm base), and dit (Decimal Digit)
being the dimension when b=10. In this study, we use b=2. 13




2.21 method

Marginal entropy

Entropy

Describe the degree of discreteness and uncertainty of a random
variable X, where higher discreteness corresponds to greater
uncertainty.

H(X ):-kzn: p(x)log, p(x)

Joint entropy

For a multidimensional random variable, joint entropy Is defined

as a measure of the total information retained b

the variables.

By extending the concept to two random variables, the total
iInformation retained by a multidimensional random variable can

be obtained.

HX,Y)=-3 p(x.y;)10g, p(X.y;)
i=1

Mutual information
T(X,Y)=

p(x%.Y;)
- .y log, J
2.2, POy )log; Tences

T(X,Y)=H(X)+H()-H(X,Y)

M'WMY‘“
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Mutual information
describes the amount
of shared information
between two random
variables, and its
magnitude reflects the
degree of correlation
between the variables.
It IS superior to
Pearson correlation
coefficient. _

It captures both linear
and nonlinear
dependencies.

: C(X, XX )=
Total correlation )
—Z H(X,)-H(X,X,,..X,)
1

Total correlation describes the
Information redundancy between
multidimensional random variables
Namely, the measure of the amount
of repeated information between the
variables.

» kis an arbitrary positive constant, and in this study, we take k=1.
» The dimension of entropy varies with the base b used, with bit (Binary

Digit) being the dimension when b=2, nat (Natural Digit) being the
dimension when b=e (natural logarithm base), and dit (Decimal Digit)
being the dimension when b=10. In this study, we use b=2.
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2.22 method——MIMR

of hydrological network sites

to select a set of sites that maximize overall
information, maximize information transfer

Calculate the joint entropy : - : .
nacity, and minimize redundant information.

of every gauges

~~

4 Use the Maximum N
Information Minimum

Redundancy (MIMR) to
optimize the gauge

\_ network. -




2.22 method——NMIMR

of hydrological network sites

to select a set of sites that maximize overall
information, maximize information transfer

Calculate the joint entropy
nacity, and minimize redundant information.

of every gauges

O <«

Set a threshold for joint
entropy.

4 Use the Maximum N
Information Minimum

Redundancy (MIMR) to
optimize the gauge

\_ network. )

N [
AN

Calculated the marginal
entropy of each site.

-

~Select the station with the
\hlghest H as the central station.

) N



2.22 method——MIMR

Rank the importance of hydrological network sites

to select a set of sites that maximize overall
information, maximize information transfer

nacity, and minimize redundant information.
fMax.H(Xsl,XSZ,...,XSk)

Calculate the joint entropy

of every gauges

gl o MaxT (< Xg Xg oo Xg >,
4 ’ ‘

4 Use the Maximum N Set a threshold for joint | < Xg Xg, oo Xg >)
Information Minimum \ entropy. S [MINC(Xg X 1o X))
Redundancy (MIMR) to [ Calculated the marginal | Assuming there are N sites in fotal,
. entropy of each site. S represents the k sites already
Optlmlze the gauge - ~ selected in the optimal network, and

Select the station with the | F represents the remaining m sites
\ highest H as the central station. | o be selected, where k+m=N.

J
N Simplify the calculation.
Use MIMR to rank the A1 and A2 are weights, A\1+A2=1

3 remaining sites. ) Max. 4,(H (xsl,x82 ,,,,, Xs )+

T(< Xsl’xsz'"" XSk > < XFl,XFz,..., XFm >)) —
O p— AC(Xg X 1o Xs,) .

\_ network. -

N N N



2.22 method

Calculate the joint entropy

of every gauges

~~

o

Information Minimum
Redundancy (MIMR) to
optimize the gauge
network.

4 Use the Maximum N

/

When n295%, the optimal final

decision for the hydrological network

site Is obtained.

Polskiej Akademii Nauk

MIMR

MIMR

Vs

Set a threshold for joint
entropy.

-

~

Calculated the marginal
entropy of each site.

J

N

AN

Select the station with the

\ highest H as the central station.

-

Use MIMR to rank the
remaining sites.

AN

-

" The final decision made when

the n reached.

(Max.H (Xg X, Xs,)

MaxT (< Xg X 1o X, >,
< Xe X o X >)

Min.C(Xg Xs s Xs,)

Assuming there are N sites in total,
S represents the k sites already
selected in the optimal network, and
F represents the remaining m sites
to be selected, where k+m=N.

Simplify the calculation.
Al and A2 are weights, A1+A2=1

Max. 4, (H (Xg Xg 1oy Xg ) +
T(< Xsl,XS ,...,XSk > < XFl,XFZ,...,XFm >)) —

2C(Xg X 1o X)) .



2.2 method

Calculate the joint entropy

of every gauges

>

N

Information Minimum
Redundancy (MIMR) to
optimize the gauge
network.

4 Use the Maximum N

/

Compare the areal
precipitation before and

after optimization.

Use

* r:correlation coefficient,

* PBIAS: percent bias,

* NSE: Nash-Sutcliffe efficiency
coefficient

to evaluate rainfall.

15



2.2 method

Calculate the joint entropy

of every gauges

>

N

Information Minimum
Redundancy (MIMR) to
optimize the gauge
network.

4 Use the Maximum N

/

Compare the areal

precipitation before and
after optimization.

Potade) Abacond
Polskiej Akademil Nauk

e

4 Comparing the ability of rainfall-driven SWAT models h
to simulate runoff before and after rainfall station
network optimization
\_ Use SWAT-CUP to calibrate the result. Y,

Use

* r2: coefficient of determination,

* PBIAS: percent bias,

* NSE: Nash-Sutcliffe efficiency coefficient
to evaluate rainfall.

Use

* r:correlation coefficient,

* PBIAS: percent bias,

* NSE: Nash-Sutcliffe efficiency
coefficient

to evaluate rainfall.

15



2.23 method——Data source

Table. Used data and their source

-

Instytut Geofizyki
Polskiej Akademii Nauk

Data name Revelation Period Source

Daily precipitation 2007-2016  Yellow River Water Conservancy
Commission of the Ministry of water
resources of China

Daily runoff 2007-2016  Yellow River Water Conservancy
Commission of the Ministry of water
resources of China

Shuttle Radar 30m https://earthexplorer.usgs.gov/

Topography

Mission (SRTM)

30m-resolution 30m 2015 http://www.globallandcover.com/

Global Land Cover

(GLC30)

World Soil 1 km 1971-1981  http://www.fao.org/soils-portal/soil-

Database (HWSD) survey/soil-maps-and-

databases/harmonized-world-soil-

database-v12/en/
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Results
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3 Result

» The information entropy around Stations
7 and 8 was higher than that around
other stations.

» The information entropy was the lowest
around Stations 5, 6, and 13.

»Reason why station has more
Information: the transpiration of vapour
carried by the monsoon being blocked
by the terrain.

The distribution of information entropy in the CW
4

% Rain gauge

B 191-1.93
B 193-1.94

1.94 -1.95

I 1.95-1.96
B 196-1.98

Fig. The distribution of information entropy in the CW
interpolated by Ordinary Kriging method .
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3 Result

» The joint entropy and
total correlation variations
with more stations being

considered.

» The mutual information
keeps increasing until the
joint entropy reaches
stable and then

decreases.

» The redundant
Information between
stations increases with
more stations being
added and the repetitive
Information becomes

more.

...
Polskiej Akademii Nauk

Table. The MIMR calculation table of the CW at the daily scale

3.32
3.15
1.08 2.57
0.73 0.83

> The rainfall
stations were

3.52
3.25
4.27
0.28

ranked as 7, 10, 1,
3,11,4,9,5, 6, 2,

and 8.

» After 8 iterations,
the threshold value

reaches 95.8%.

» The rainfall
Information of 8

stations can reflect

95.8% of the

rainfall information 3
of the watershed.

Marginal entropy and joint entropy mutual information, and threshold

3.85
3.33
6.11
0.92

4.0 1
35
30+

25 4

=
Lty
]

3.75
3.36
7.97
0.54

3.79
3.36
9.89
0.95

| —8— Toint entropy
—— Mutsal information
| —dk— Thrashold
Total comralation

3.34
11.74
0.96

3.28
13.61

0.97

3.12
15.53
0.98

17.42 19.33

0.99 0.99 1.00

Iterations

— T T T T
10 11 12 13 14

Fig. The variation of marginal entropy and joint entropy (H), mutual
information (T), total correlation (C), and threshold (n) with the number

of iterations.
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3 Result

@ L ®

r0oos %

PBIAS: 08% 4

NSE: 0.000
7

Ip

—_
—

40

» Raingauge
—— Contbour
High: 76.54 mm

0
Low:324mm |

= Razinzapze
—— Contour
High: 73.14 mm

-Low :11.14 mm

3 10Km
1 ]

Fig. The distribution of rainfall in the CW (A) before optimization and (B) after

optimization. The r, PBIAS, and NSE of them were 0.998, 0.8%, and 0.999 respectively.

» A strong spatially correlation between
the rainfall distribution before and after
the rainfall network was optimized.

» The precipitation after the rainfall
network optimization was hardly
overestimated and the accuracy of the
data was high.

» The density of the new rain station
network was 20.4 km”2.

»the rainstorm center can be caught by
the optimized rainfall network

» The rainfall isoline of the optimized
rainfall network was similar to that of
the original rainfall network.
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3 Result

, (A -
1'_.Ea;hgmﬁmfzm.mm-zmual:r - memonnonnsnsn >the NSE and R?2 were higher than 0.6.
10 {R*=).72 ! "':'?3 . .

¢ Jomtasm 13592 . Pl »The models driven by different gauge

_ networks perform well both in the

* ‘ calibration and validation period.

. I T » The uncertainty in simulating runoff
20080101 20000101 20100100 20110100 20120101 20130101 20140101 20150101 20160101 20161231 reduced W|th the number Of the gauge

Sirmla ted mnofi|

[Runorr {cms)

Date .
(B) Measured runoff Increased.
2 7 Calibration (2008.01.01-2013.12.31) | Validation (2014.01.1-2016.12.31)
] ! _
10 J R*=0.67 i R=0.70
| MNEE=0 67 i NSE=0.66
w g | PBIAS=).85% | PRIAS=12 56%
5 ] i
; & I
= !
- i
14 1
- !
0 |-hl i ba L LL | L lk f Hji A !
T I T I

I ! | 4 | I ! I ! ! | ! | ! |
20080101 20080100 20100101 20110100 20120101 2015301.01 20140101 20150101 20160101 20161231

Fig. Simulation r]gsa&?ts of SWAT model. (A) the simulation
results of the original gauge network; (B) the simulation results
of the optimized gauge network. Noting that the calibration
@ period was 2008.01.01 —2013.12.31 and the validation period
rasmsmines \Was 2014.01.01 -2016.12.31. And the data was given by 21
vear.month.dav.



3 Result

: _Eigmﬁm{zm.mm.muu.sl} i Validation 2014.01.1-2016.1231)
R fona  NEon In the calibration period:
= B -{PBIAS=1339% I PBIAS=3611%
2] ’ »Optimized-Model performed well
'] ‘ »Both the model developed on the
o e Optimized-Model and the Original-

i
T T T i ' T ' T T T
20080101 20020100 20100100 20110101 20120101 201530101 20140101 20150101 20160101 20161231 IVI Od e I pe rfo rm e d We | I "

(38 A
1

i » Original-Model slightly underestimated
S SRV | W I W N T I P YV, TN the runoff while Optimized-Model
20080101 20000100 220100101 20110100 20120101 201530101 20140101 20150101 20160101 20161231 Sllg htly Overestlmated the Streamflow.

Fig. Simulation r]gsa&?ts of SWAT model. (A) the simulation
results of the original gauge network; (B) the simulation results
of the optimized gauge network. Noting that the calibration
@ period was 2008.01.01 —2013.12.31 and the validation period
rasmsmines \Was 2014.01.01 -2016.12.31. And the data was given by 22
vear.month.dav.

Date Simmlated mnoff] .
gim ot 25D | ﬁﬁm:;ﬁafjﬁi o »Some of the floods were not simulated
olroe T | Ron0 by both Optimized-Model and the
T o {pBlas28m | PRIAS=1256% Original-Model, especially the extreme
=K i floods.




3 Result

,_(A) In the validation period:
] Catibration (2008.01.01-2013.12.31) i Validation 2014.01.1-2016.1231) . ..

0 R=7 R > The ability of Original-Model and
{PRIAS=1350% FBIAS=3611% Optlmlzed—ModeI to catch floods

became better.
» Their R*2 were both higher than 0.70
b b ,L, LN »Both models achieved good

20080101 20000100 20100101 20110100 201201.01 20150101 201401.01 201501.01 201601.01 20161251 performance

=11 [==]
1

[Runorr {cms)

0 -

3

Sirmla ted mnofi|

Date
(B) MEazured runoff L. - - _
1 | Cateaon (00801012003 123 Catdet o 012 01 120161231 >Bot_h Original anc_l Optimized-Model
0 JR=067 R=0.70 seriously overestimated the stream-
4 NSE=DST MNSE=) .60
s Iperaso s PRIAS=42 56% flow.

» The performance of the Optimized-
Model was poorer than that of the
g l i s Original-Model

20080101  200001.01 201001.01 20110101 20120101 201301.01 I:c-14.<:-1.c-1 I:mj.clll.c-l IJ-:ll-E.-:lll.-:ll IJG-IE.IIJ.EI >The ab|l|ty Of the Opt|m|zed-MOde| to
Fig. Simulation r]gsa&?ts of SWAT model. (A) the simulation SlmUIate extreme f_IO_OdS was worse
results of the original gauge network; (B) the simulation results than tha‘[ Of the Or|g|na|_|\/|ode| ]

of the optimized gauge network. Noting that the calibration
@ period was 2008.01.01 —2013.12.31 and the validation period
rasmsmines \Was 2014.01.01 -2016.12.31. And the data was given by 23
vear.month.dav.
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3 Result

LA N In the validation period:
] Catibration (2008.01.01-2013.12.31) j  Validation (2014.01.1-2016.1231) . -
0 JR472 R » The ability of Original-Model and
’E‘ 8 - PRIAS=1350% | PBlas=36ll% Optimized-ModeI to catch floods
ERb i became better.
27 > Their R"2 were both higher than 0.70
n—_ 11 N = P Y PSRN PR PREPEN M- DN g 0

VP « The rain gauge network performed in 5|mulat|ng
;) ,anditis . d-Model
] Calibration (2008.0 o . . .
10 |R=0.67 * However, it is necessary to design a new gauge network with more XS(f=El
JMEE=DGT . . 5 . ) “1:
2 & | PRLAS=2.85% rain stations being added to improve the model’s ability to
= ] simulate and predict floods. timized-
54—_ VIOOEl Was poorer thaf tnat of the
. i I P N\ T | Original-Model
:!M.El]lllﬂl i.[[lﬂﬂllm Zﬂll}l}ll 0l 1l]llll]l1 0l i.l}llﬂll 01 2013 l]lll L I.I}I-H}Il 01 E.I}ISI}II 01 1!]116]]"1 01 lﬂlﬁlll 31 >The ability Of the Optimized-MOdeI to

Fig. Simulation resufts of SWAT model. (A) the simulation SimUIate extreme f_IO_OdS was worse
results of the original gauge network; (B) the simulation results than that Of the Or|g|naI-Mode| ]

of the optimized gauge network. Noting that the calibration
- period was 2008.01.01 —2013.12.31 and the validation period
e isenines Was 2014.01.01 -2016.12.31. And the data was given by 24
vear.month.dayv.
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4 Conclusion

» The distribution of precipitation and entropy exhibits the same trend, higher in the
south-west and lower in the north. The heavier the rain, the more information the
station contains.

»Use MIMR to optimize the rain gauge network, and 10 stations were selected
according to the threshold of the joint entropy.

» The number of iterations increased, the joint entropy trended to become stable.
» The optimized rain gauge network can provide 98.5% rainfall information of the.

»In addition, according to the runoff simulation results, the optimized gauge network
achieved good performance in simulating runoff and it can be used in the CW to
replace the original one.
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