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1 Background and motive
The input data will influence the accuracy 

of hydrological output results.

Spatial and temporal distribution of rainfall 
influence the hydrological behavior of the 
model.

Fig. Terrestrial water circulation processes Fig. Hydrological processes simulated by SWAT model 
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1 Background and motive
Spatial interpolation of rainfall at ground-based 

gauges are regarded as watershed areal rainfall.

The true distribution of precipitation can’t be 
represented well by point rainfall.

The rain gauge network should be well designed.

The information entropy can be used in rain 
gauge network optimization.

Fig. The distribution of annual precipitation, interpolated by 
King’s method.
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1 Background and motive

The first row shows the joint 
entropy of variables X and Y, mutual 
information between variables X 
and Y, and joint entropy of variables 
X, Y, and Z. The second row shows 
mutual information between 
variables X, Y and Z, and the total 
correlation between variables X, Y, 
and Z.

Fig. The relationship between binary and multivariate joint entropy H, 
mutual information T, and total correlation C.

Entropy: the mathematical foundation for 
measuring information or uncertainty.

Entropy-based methods can:

1) directly define the optimization deployment 
information of the rain gauge network 

2) quantify the uncertainty.

The key to the design and optimization station 
network: 

1) how much information is contained in one or 
several stations;

2) how much information can be transmitted 
from one or more stations to other stations;

3) how much information is shared among 
several stations.
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1 Background and motive

The first row shows the joint 
entropy of variables X and Y, mutual 
information between variables X 
and Y, and joint entropy of variables 
X, Y, and Z. The second row shows 
mutual information between 
variables X, Y and Z, and the total 
correlation between variables X, Y, 
and Z.

Fig. The relationship between binary and multivariate joint entropy H, 
mutual information T, and total correlation C.

Entropy: the mathematical foundation for 
measuring information or uncertainty.

Entropy-based methods can:

1) directly define the optimization deployment 
information of the rain gauge network 

2) quantify the uncertainty.

The key to the design and optimization station 
network: 

1) how much information is contained in one or 
several stations;

2) how much information can be transmitted 
from one or more stations to other stations;

3) how much information is shared among 
several stations.

• measure the spatial information 
between rain gauges

• evaluate whether the information is 
sufficient

• subsequently optimize the rain gauge 
network

The step to optimize 
gauge network. 6



1 Background and motive
The study area (Chabagou Watershed) is in the Loess Plateau of China, where:

water resources are scarce and rainfall is concentrated and unevenly distributed 

flash floods are very common

the topography of the watershed is complex

the economy is not well developed

Fig. The location of the study area
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1 Background and motive
The study area (Chabagou Watershed) is in the Loess Plateau of China, where:

water resources are scarce and rainfall is concentrated and unevenly distributed 

flash floods are very common

the topography of the watershed is complex

the economy is not well developed

Fig. The location of the study area

Main objectives 

(1) to understand the distribution of the annual 
precipitation and information entropy of the 
CW;

(2) to optimize the rain gauge network by 
using the MIMR based on the information 
entropy and evaluate the optimized rain 
gauge network; 

(3) evaluate the impact of the different rain 
gauge networks on simulating the 
watershed hydrology via the SWAT model.
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2.1 Study area

Fig. The study area

Located in Shaanxi Province in 
Northwest China.

The drainage area of the CW is 205 
km^2.
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Fig. The study area

Located in Shaanxi Province in 
Northwest China.

The drainage area of the CW is 205 
km^2.

Climate type: arid and semi-arid 
continental monsoon climate.

Features less rainfall and more 
sunshine.

Rainfall period is June to September, 
accounting for about 70% of the annual 
precipitation .

Annual average rainfall is 450 mm

Annual average runoff is 3684900 m^3

2.1 Study area

Fig. The CW

Fig. Install rain gauges at the CW Fig. The CW
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Fig. The study area

Located in Shaanxi Province in 
Northwest China.

The drainage area of the CW is 205 
km^2.

Climate type: arid and semi-arid 
continental monsoon climate.

Features less rainfall and more 
sunshine.

Rainfall period is June to September, 
accounting for about 70% of the annual 
precipitation .

Annual average rainfall is 450 mm

Annual average runoff is 3684900 m^3

Mainly soil type is loess soil, which has 
a soft structure and is easy to be eroded

Cropland is the dominant land-use type

2.1 Study area

Fig. The CW

Fig. The installed rain gauge

11



Calculate the joint entropy 

of every gauges 

2.2 method 
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Marginal entropy
Describe the degree of discreteness and uncertainty of a random 
variable X, where higher discreteness corresponds to greater 
uncertainty.

1

=- ( ) log ( )
n

i b i

i

H X k p x p x


（ ）

• k is an arbitrary positive constant, and in this study, we take k=1. 
• The dimension of entropy varies with the base b used, with bit (Binary 

Digit) being the dimension when b=2, nat (Natural Digit) being the 
dimension when b=e (natural logarithm base), and dit (Decimal Digit) 
being the dimension when b=10. In this study, we use b=2.

2.21 method—— Entropy
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• For a multidimensional random variable, joint entropy is defined 
as a measure of the total information retained by the variables. 

• By extending the concept to two random variables, the total 
information retained by a multidimensional random variable can 
be obtained.

• k is an arbitrary positive constant, and in this study, we take k=1. 
• The dimension of entropy varies with the base b used, with bit (Binary 

Digit) being the dimension when b=2, nat (Natural Digit) being the 
dimension when b=e (natural logarithm base), and dit (Decimal Digit) 
being the dimension when b=10. In this study, we use b=2.
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Marginal entropy

Joint entropy

Mutual information
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( , ) ( ) ( ) ( , )T X Y H X H Y H X Y  - • k is an arbitrary positive constant, and in this study, we take k=1. 
• The dimension of entropy varies with the base b used, with bit (Binary 

Digit) being the dimension when b=2, nat (Natural Digit) being the 
dimension when b=e (natural logarithm base), and dit (Decimal Digit) 
being the dimension when b=10. In this study, we use b=2.

• Mutual information 
describes the amount 
of shared information 
between two random 
variables, and its 
magnitude reflects the 
degree of correlation 
between the variables. 

• It is superior to 
Pearson correlation 
coefficient. 

• It captures both linear 
and nonlinear 
dependencies.

2.21 method—— Entropy
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Marginal entropy

Joint entropy

Mutual information

Total correlation
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Total correlation describes the 
information redundancy between 
multidimensional random variables
Namely, the measure of the amount 
of repeated information between the 
variables.

• k is an arbitrary positive constant, and in this study, we take k=1. 
• The dimension of entropy varies with the base b used, with bit (Binary 

Digit) being the dimension when b=2, nat (Natural Digit) being the 
dimension when b=e (natural logarithm base), and dit (Decimal Digit) 
being the dimension when b=10. In this study, we use b=2.

2.21 method—— Entropy
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Calculate the joint entropy 

of every gauges 

Use the Maximum 

Information Minimum 

Redundancy (MIMR) to 

optimize the gauge 

network. 

MIMR
Rank the importance of hydrological network sites 

to select a set of sites that maximize overall 
information, maximize information transfer 

capacity, and minimize redundant information.

2.22 method——MIMR
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Calculate the joint entropy 

of every gauges 

Use the Maximum 

Information Minimum 

Redundancy (MIMR) to 

optimize the gauge 

network. 

MIMR
Rank the importance of hydrological network sites 

to select a set of sites that maximize overall 
information, maximize information transfer 

capacity, and minimize redundant information.

STEP

Set a threshold for joint 
entropy.

Calculated the marginal 
entropy of each site.

Select the station with the 
highest H as the central station.

1

2

3

4

5

2.22 method——MIMR

14



Calculate the joint entropy 

of every gauges 

Use the Maximum 

Information Minimum 

Redundancy (MIMR) to 

optimize the gauge 

network. 

MIMR
Rank the importance of hydrological network sites 

to select a set of sites that maximize overall 
information, maximize information transfer 

capacity, and minimize redundant information.

STEP

Set a threshold for joint 
entropy.

Calculated the marginal 
entropy of each site.

Select the station with the 
highest H as the central station.

Use MIMR to rank the 
remaining sites.

1

2

3

4

5

1 2

1 2

1 2

1 2

. ( , ,..., )

. ( , ,..., ,

, ,..., )

. ( , ,..., )

k

k

m

k

S S S

S S S

F F F

S S S

Max H X X X

MaxT X X X

X X X

Min C X X X




 


 



1 2

1 1 22

1 2

1

2

. ( ( , ,..., )

( , ,..., , , ,..., ))

( , ,..., )

k

k m

k

S S S

S S S F F F

S S S

Max H X X X

T X X X X X X

C X X X







    

Simplify the calculation.
λ1 and λ2 are weights, λ1+λ2=1 

Assuming there are N sites in total, 

S represents the k sites already 

selected in the optimal network, and 

F represents the remaining m sites 

to be selected, where k+m=N.

2.22 method——MIMR
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Set a threshold for joint 
entropy.

Calculated the marginal 
entropy of each site.
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highest H as the central station.

Use MIMR to rank the 
remaining sites.
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When η≥95%, the optimal final 

decision for the hydrological network 

site is obtained.

2.22 method——MIMR
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Calculate the joint entropy 

of every gauges 
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Information Minimum 

Redundancy (MIMR) to 
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• NSE: Nash-Sutcliffe efficiency 
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to evaluate rainfall.

2.2 method 

15



Calculate the joint entropy 

of every gauges 

Use the Maximum 

Information Minimum 

Redundancy (MIMR) to 

optimize the gauge 

network. 

Compare the areal 

precipitation before and 

after optimization.

Use
• r : correlation coefficient, 
• PBIAS: percent bias, 
• NSE: Nash-Sutcliffe efficiency 

coefficient 
to evaluate rainfall.

Comparing the ability of rainfall-driven SWAT models 

to simulate runoff before and after rainfall station 

network optimization

Use SWAT-CUP to calibrate the result.

Use
• r2 : coefficient of determination, 
• PBIAS: percent bias, 
• NSE: Nash-Sutcliffe efficiency coefficient 
to evaluate rainfall.

2.2 method 

15



Data name Revelation Period Source 

Daily precipitation  2007-2016 Yellow River Water Conservancy 

Commission of the Ministry of water 

resources of China 

Daily runoff  2007-2016 Yellow River Water Conservancy 

Commission of the Ministry of water 

resources of China 

Shuttle Radar 

Topography 

Mission (SRTM) 

30m  https://earthexplorer.usgs.gov/ 

30m-resolution 

Global Land Cover 

(GLC30) 

30m 2015 http://www.globallandcover.com/ 

World Soil 

Database (HWSD) 

1 km 1971-1981 http://www.fao.org/soils-portal/soil-

survey/soil-maps-and-

databases/harmonized-world-soil-

database-v12/en/ 

 

Table. Used data and their source

2.23 method——Data source
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3 Result

The information entropy around Stations 
7 and 8 was higher than that around 
other stations.

The information entropy was the lowest
around Stations 5, 6, and 13.

Reason why station has more 
information: the transpiration of vapour
carried by the monsoon being blocked  
by the terrain.

Fig. The distribution of information entropy in the CW 
interpolated by Ordinary Kriging method .
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3 Result
Table. The MIMR calculation table of the CW at the daily scale

Fig. The variation of marginal entropy and joint entropy (H), mutual 
information (T), total correlation (C), and threshold (η) with the number 

of iterations.

The rainfall 
stations were 
ranked as 7, 10, 1, 
3, 11, 4, 9, 5, 6, 2, 
and 8.

After 8 iterations, 
the threshold value 
reaches 95.8%.

The rainfall 
information of 8 
stations can reflect 
95.8% of the 
rainfall information 
of the watershed.

The joint entropy and 
total correlation variations 
with more stations being 
considered.

The mutual information 
keeps increasing until the 
joint entropy reaches 
stable and then 
decreases.

The redundant 
information between 
stations increases with 
more stations being 
added and the repetitive 
information becomes 
more.
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3 Result

Fig. The distribution of rainfall in the CW (A) before optimization and (B) after 
optimization. The r, PBIAS, and NSE of them were 0.998, 0.8%, and 0.999 respectively.

A strong spatially correlation between 
the rainfall distribution before and after 
the rainfall network was optimized.

The precipitation after the rainfall 
network optimization was hardly 
overestimated and the accuracy of the 
data was high. 

The density of the new rain station 
network was 20.4 km^2.

the rainstorm center can be caught by 
the optimized rainfall network

The rainfall isoline of the optimized 
rainfall network was similar to that of 
the original rainfall network. 
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3 Result

Fig. Simulation results of SWAT model. (A) the simulation 
results of the original gauge network; (B) the simulation results 

of the optimized gauge network. Noting that the calibration 
period was 2008.01.01 – 2013.12.31 and the validation period 

was 2014.01.01 -2016.12.31. And the data was given by 
year.month.day.

the NSE and R^2 were higher than 0.6.

The models driven by different gauge 
networks perform well both in the 
calibration and validation period. 

The uncertainty in simulating runoff 
reduced with the number of the gauge 
increased.
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3 Result

Fig. Simulation results of SWAT model. (A) the simulation 
results of the original gauge network; (B) the simulation results 

of the optimized gauge network. Noting that the calibration 
period was 2008.01.01 – 2013.12.31 and the validation period 

was 2014.01.01 -2016.12.31. And the data was given by 
year.month.day.

In the calibration period:

Optimized-Model performed well

Both the model developed on the 
Optimized-Model and the Original-
Model performed well.

Some of the floods were not simulated 
by both Optimized-Model and the 
Original-Model, especially the extreme 
floods.

Original-Model slightly underestimated 
the runoff while Optimized-Model 
slightly overestimated the streamflow.
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3 Result

Fig. Simulation results of SWAT model. (A) the simulation 
results of the original gauge network; (B) the simulation results 

of the optimized gauge network. Noting that the calibration 
period was 2008.01.01 – 2013.12.31 and the validation period 

was 2014.01.01 -2016.12.31. And the data was given by 
year.month.day.

In the validation period:

The ability of Original-Model and 
Optimized-Model to catch floods 
became better.

Their R^2 were both higher than 0.70

Both models achieved good 
performance.

Both Original and Optimized-Model 
seriously overestimated the stream-
flow.

The performance of the Optimized-
Model was poorer than that of the 
Original-Model

The ability of the Optimized-Model to 
simulate extreme floods was worse
than that of the Original-Model.
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3 Result

Fig. Simulation results of SWAT model. (A) the simulation 
results of the original gauge network; (B) the simulation results 

of the optimized gauge network. Noting that the calibration 
period was 2008.01.01 – 2013.12.31 and the validation period 

was 2014.01.01 -2016.12.31. And the data was given by 
year.month.day.

In the validation period:

The ability of Original-Model and 
Optimized-Model to catch floods 
became better.

Their R^2 were both higher than 0.70

Both models achieved good 
performance.

Both Original and Optimized-Model 
seriously overestimated the stream-
flow.

The performance of the Optimized-
Model was poorer than that of the 
Original-Model

The ability of the Optimized-Model to 
simulate extreme floods was worse
than that of the Original-Model.

• The optimized rain gauge network performed well in simulating 
runoff, and it is feasible to replace the original gauge network. 

• However, it is necessary to design a new gauge network with more 
rain stations being added to improve the model’s ability to 
simulate and predict floods.
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4 Conclusion 

The distribution of precipitation and entropy exhibits the same trend, higher in the 
south-west and lower in the north. The heavier the rain, the more information the 
station contains. 

Use MIMR to optimize the rain gauge network, and 10 stations were selected 
according to the threshold of the joint entropy. 

The number of iterations increased, the joint entropy trended to become stable. 

The optimized rain gauge network can provide 98.5% rainfall information of the. 

In addition, according to the runoff simulation results, the optimized gauge network 
achieved good performance in simulating runoff and it can be used in the CW to 
replace the original one.
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