

<u>Applying hidden Markov</u> <u>modelling to fine-scale</u> <u>fish telemetry data</u>

Jelger Elings R. Mawer, S. Bruneel, I. Pauwels, M. Schneider, J. Coeck, I. Kopecki, P. Goethals

RESEARCH INSTITUTE NATURE AND FOREST

Why?

- High density of migration barriers
 - Increase in hydropower development
- Blocks fish migration
- Fish navigation key to success in fishway efficiency
 - By improving attraction efficiency

Fish navigation

- Fish navigation mainly depending on ecohydraulic cues
 - Flow velocity
 - Spatial velocity gradient
- How do fish react to ecohydraulic cues around fishway entrances?
 - Fine-scale telemetry allows to investigate fine-scale decisions

<u>Acoustic Telemetry – How does it work?</u>

<u>Acoustic Telemetry – How does it work?</u>

<u>Acoustic Telemetry – fine-scale tracking</u>

- Fish position every
 - ~1 second
- Fish is utilizing different habitats
 - Swimming throughout
 - Resting in low-velocity

Hidden Markov Models

- We know where.But why?
- Certain assumptions to be met:
 - Regular timesteps
 - Negligible measurement errors

HMM – measurement errors

HMM – measurement errors

HMM – Effect of regularization

- HMM developed for several tracks (1 fish)
- Choosing timestep affects state definition
- After state definition links to ecohydraulic parameters can be made

jelger.elings@ugent.be

This project has received funding from the European Union Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie Actions, Grant Agreement No. 860800

