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pair of first-order partial differential equations.

◮ The nature of the equations is such that a flood wave propagates
showing diffusion (lowering, widening) as it progresses

◮ However, often little is known about a stream – its geometry or
resistance.

◮ Often, however, time series of water level at the beginning and end of a
stream are measured.

◮ Here, we use those input and output time series to obtain the “System
Function” or “Transfer Function” which is the downstream response to
the input of a single upstream input.

◮ That function can then be used to simulate the outflow of any other
inflow, for example to predict the downstream effects of a current flood.

◮ There have been many papers on this method in hydrology –
calculating the output in a stream from the input of a rain event. It
has rarely been applied to flood routing.

◮ Here, we use rather simpler optimising software than conventional
deconvolution methods.
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◮ Consider an input sequence of Im, m = 0, . . . ,M − 1, which could be
river levels or flows.

◮ Here we use river levels – they do not vary as much as discharge, and
the method is based on the assumption of linearity – applicable to
small changes.

◮ Linear transfer function hk, k = 0, . . . ,K, relating input to output

◮ Output On, whether river level or flow, is due to all the contributions
Im multiplied by their effect on the outflow with a time difference
n−m:

On =

n6M
∑

m=0,
m>n−K

Imhn−m, for n = 0, . . . , N − 1.

◮ Such a summation is a discrete convolution. First, one takes the M

input values and N output values and solves the system of linear
equations for the hk by standard methods. Then, the effects of any
future flood can be predicted by performing the convolutions with the
calculated hk but with a new set of observed Im.
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Using optimisation

◮ There may be problems in solving for the transfer function.

◮ The system of equations might be over-determined and might be
poorly conditioned numerically.

◮ The use of optimising software overcomes some of these problems – and

would even allow nonlinear generalisations. We seek to minimise the
total sum of the squares of the errors e of the approximating
convolutions over the N data points:

e =
N−1
∑

n=0







n6M
∑

m=0,
m>n−K

Imhn−m −On
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Field measurements – Chattahoochee River, Georgia, USA

◮ Faye & Cherry (1980) describe a careful large-scale experiment
performed on a 28km reach of the Chattahoochee River in the vicinity
of Atlanta, Georgia, USA.

◮ Collection of stage and discharge data occurred intensively over a 3-day
period in 1976. Initial flow conditions in the river were steady and low.

◮ Rapid changes in flow from a hydro power station were simulated.

◮ Measurements of stage at a number of stations were made continuously.
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A generalisation to multiple inputs
◮ Such a method was used in a study of flows in a complex set of

interconnections in the Broken River Valley in south-eastern Australia
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A generalisation to multiple inputs
◮ Such a method was used in a study of flows in a complex set of

interconnections in the Broken River Valley in south-eastern Australia
◮ The routing model was expressed as the simple combination of several

transfer functions such as that shown previously.
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Results
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◮ Using surface elevation data has some advantages. It is simply and
directly obtained; no reference to rating curves is necessary; neither is
there a need to use flow hydrographs, thereby bypassing the problem of
the effects of unsteadiness on the rating curves; and often the effects of
water level are more important than the actual flow.

◮ The use of optimisation to determine the system characteristics was
found to be flexible and robust, and it enabled the application of the
method to rivers with more than one input.

◮ However, the method is not as accurate for large flood waves. It is
based on an assumption of linearity – small disturbances.

◮ The method can be used with multiple inputs.


