

Evaluating Management Practices to reduce sediment yield in the Fincha Watershed, Ethiopia

Motuma Regasa, Michael Nones

Institute of Geophysics PAS, Poland

mregasa@igf.edu.pl

- Background
- Study Objectives
- ➢ Material and methodology
- Results and Discussion
- > Conclusions and recommendation

Background

 ✓ One of the most significant environmental issues facing the world today is soil erosion, which poses a threat to both agriculture and the environment

Country/Continent/world	Soil loss rate/Soil loss /continent	Sources	
United State	16 t/ha/y	Deore, 2005	
Europe	20-40 t/ha/y	Deore, 2005	
Ethiopia	25-30 t/ha/y	Deore, 2005	
World	Annually, 75 billion t soil eroded	Dissanayake et al., 2019	
Ethiopia	Annually, 1.5 billion t soil eroded	Taddese, 2001	

Agegnehua et al., 2017

The study aims to evaluate the effect of management practices on reducing soil loss and sediment yield across the watershed, via numerical modelling

Data and Methodology

Location of study area

Methodology

Methodology

Scenarios	Description	Parameters	Calibrated value	Modified value
Baseline	The existing condition in the watershed	-	-	
Filter strip	5m (modified from swat mgt database) wide grass strips established on cultivated land	Filter width	0	5 m
Contour	plowing and planting across slope contours to create a man-made water break that allows enough time for water to enter to soil	USLE_P (Management support practices factor) CN2 (Curve number)	0.53 83	0.32 80 (reduced by 3 units)
Soil or	Elevated physical soil/stone or form a	SLSUBBSN (slope Length)	18.292	0.5* (reduced by 50%)
Stone	barrier along the contours that slow down	USLE_P(Management support practices factor)	0.53	0.32
bund	the water run-off	HRU_SLP (slope)	0.327	0.75* (reduced by 25%)
	CN2 (Curve number)	83	80 (reduced by 3 units)	
Terracing	Constructed channels across the slope and	SLSUBBSN(slope Length)	18.292	0.5* (reduced by 50%)
	reduces runoff velocity	USLE_P (Management support practices factor)	0.53	0.32
		CN2 (Curve Number)	83	80 (reduced by 3 units)

Results

✓ What benefits can Best Management Practices (BMPs) provide?

Results

- \checkmark Using BMPs produced encouraging results in the reduction of sediment yield.
- ✓ The effectiveness of the chosen BMPs ranges from 59.75% to 75.82%.
- ✓ Terracing, Contour, and Soil/Stone bund scenarios involved the highest reduction, while Filter strips the lowest.
- ✓ Due to resource limitations, it is not possible to carry out soil and water conservation measures simultaneously throughout the entire watershed.
- ✓ To achieve sustainable development of the basin land and water resources, priority should be given to sub-watersheds at high risk of soil erosion or more vulnerable.

Conclusions

- ✓ This study pointed out that most of the sub-watershed of Fincha watershed are highly threatened by soil erosion, and the same trend will be expected for the future if no countermeasures will be implemented.
- ✓ MPs can help in reducing sediment yield at the watershed scale, but they might be not yet effective in lowering soil erosion below a critical threshold in highly-impacted areas.
- ✓ Terracing resulted the most effective BMP to reduce sediment yield in the Fincha watershed.

Recommendations

✓ The challenges related to data and hydrological modeling:

- Improve hydro-metrological monitoring
- Improve data recording centers, technical skills, office services
- \checkmark In a country where financial constraints are prevalent it is required to:
 - Prioritize hotspots
 - Prioritize the most effective BMPs

✓ Application of BMPs requires additional soil and land management measures:

- Eco-hydrology, riparian restoration
- Buffer zone, stream bank stabilization

Thank you for your Attention

