

23-26 MAY 2023 • KĄTY RYBACKIE • POLAND

Development of a generalized criterion for selecting optimal MRF rotation zone for CFD simulation of stirred tank reactors

Devarajan Krishna Iyer¹ and Ajey Kumar Patel² Ph.D. Scholar¹ and Associate Professor², NIT Warangal, Warangal, Telangana, India

Bv

OUTLINE OF PRESENTATION

- Introduction
- MRF approach
- MRF boundary
- Stirred tank configuration
- Computational Methodology
- Governing equations
- Computational grid
- Convergence of CFD simulation
- Grid independence study
- Position of MRF boundary
- Conclusions
- Acknowledgements
- References

INTRODUCTION

INTRODUCTION Contd.

- Proper design requires detailed knowledge of stirred tank hydrodynamics
- Computational Fluid Dynamics (CFD) \rightarrow Popular tool for predicting tank hydrodynamics
- Modelling of impeller rotation is a major challenge
- Multiple Reference Frame (MRF) approach → Popular model for impeller rotation

MRF APPROACH

ig. 2: Rotating and stationary zones associated with

the stirred tank reactor (Source: Joshi et al. (2011))

 Improper position of MRF boundary increases round-off errors and decreases accuracy and numerical convergence of simulations

MRF BOUNDARY

MRF BOUNDARY Contd.

Authors	Optimal MRF boundary	Remarks	
Oshinowo et al. (2000)	<i>D_r</i> : 2.05 <i>D</i>	Optimal axial extent was determined while radial extent was kept constant	
	$H_r: \pm 0.5D$		
Zadravec et al. (2007)	<i>D_r</i> : 1.43 <i>D</i>	Larger extents of MRF boundary are suitable for modelling reactor vessels	
	<i>H_r</i> : 0.63 <i>D</i>		
Shi and Rzehak (2017)	D_r : 1.66 D	Optimal radial extent was determined while axia	
	<i>H_r</i> : ±1.452 <i>D</i>	extent was kept constant	
Patil et al. (2021)	<i>D_r</i> : 2 <i>D</i>	Optimal extents were determined from mean velocity predictions	
	<i>H_r</i> : 0.62 <i>D</i>		
Mittal and Kikugawa (2021)	D_r : 1.4D	MRF boundary near impeller or baffle walls generate unsteady effects in tank	
	<i>H_r</i> : 0.42 <i>D</i>		

 Objective: Development of a generalized criterion for determining optimal extents of MRF boundary for any configuration of stirred tank reactor

STIRRED TANK CONFIGURATION

Fig. 3: (a) Sectional elevation and (b) Plan of the standard configuration of stirred tank reactor adopted for the present study (Impeller speed: 200 rpm; Reynolds number: 29,000) (Source: Wu and Patterson (1989))

COMPUTATIONAL METHODOLOGY

Parameter	Approach adopted for CFD simulations
Modelling approach	Steady state three dimensional Reynolds Averaged Navier Stokes (RANS) equations
Turbulence model	Standard $k - \varepsilon$ turbulence model
Impeller rotation model	Multiple Reference Frame (MRF) impeller modelling scheme
Boundary conditions	Tank periphery, tank bottom, impeller: No-slip boundary condition Tank top surface: Symmetry boundary condition
Pressure-Velocity coupling scheme	SIMPLE scheme
Discretization scheme	Second order upwind scheme
Convergence criteria	10 ⁻⁶
Workstation	Double precision 64 bit Intel (R) Xeon (R) E5-1620 3.6 GHz processor with 12 cores
Software	ANSYS 17.0 version

GOVERNING EQUATIONS

Continuity equation:

 $\nabla (\rho \vec{\mathbf{u}}) = 0$

Momentum equation:

$$\nabla \cdot (\rho \vec{u} \vec{\mathbf{u}}) = -\nabla P + \nabla \cdot \left(\bar{\tau} + \overline{\tau^R}\right) + \rho \vec{g} + \overline{F^{MRF}}$$

Turbulent viscosity (μ_t) from standard $k - \varepsilon$ model:

$$\mu_t = C_\mu \rho \frac{k^2}{\varepsilon}$$

Transport equations of k and ε :

$$\nabla (\rho \vec{\mathbf{u}} k) = \nabla (\frac{\mu_t}{\sigma_k} \nabla k) + G_k - \rho \varepsilon$$

$$\nabla (\rho \vec{\mathbf{u}} \varepsilon) = \nabla (\frac{\mu_t}{\sigma_\varepsilon} \nabla \varepsilon) + \frac{\varepsilon}{k} (C_{1\varepsilon} G_k - C_{2\varepsilon} \rho \varepsilon)$$
(5)

10

(1)

(2)

(3)

GOVERNING EQUATIONS Contd.

Performance goals

Power number based on impeller torque
$$(N_{pt})$$
: $N_{pt} = \frac{2\pi N\tau}{\rho N^3 D^5}$ (6)

Power number based on turbulence dissipation rate $(N_{p\varepsilon})$: $N_{p\varepsilon} = \frac{\iiint \rho \varepsilon \, dV}{\rho N^3 D^5}$

Energy imbalance = $\frac{N_{pt} - N_{p\varepsilon}}{Npt}$

Terminology

 ρ : Time averaged density

P: Static pressure

- u: velocity of fluid
- $\bar{\bar{\tau}}$: Viscous stress tensor
- $\overline{\tau^R}$: Reynolds stress tensor $\rho \vec{g}$: Gravitational body force $\overline{F^{MRF}}$: Centrifugal and coriolis forces

- k: Turbulent kinetic energy
- ε : Turbulent dissipation rate
- G_k : Turbulence generation rate
- σ_k , σ_{ε} : Turbulent Prandtl numbers

 $C_{1\varepsilon}, C_{2\varepsilon}$: constants

 $\sigma_k = 1, \sigma_s = 1.3$

$$C_{\mu} = 0.09, C_{1\varepsilon} = 1.44, C_{2\varepsilon} = 1.92$$

τ: Net impeller torqueD: Diameter of impellerN: Impeller speed

(7)

COMPUTATIONAL GRID

Fig. 4: Computational grid (Hybrid grid type) developed for the present study

CONVERGENCE OF CFD SIMULATION

Fig. 5: Typical convergence curve from the CFD model with optimal MRF boundary

GRID INDEPENDENCE STUDY

- Grid independence study was performed for all computational trials
- Size of tetrahedral elements comprising the impeller was successively reduced
- Normalized radial velocity $\left(\frac{u_r}{u_{tip}}\right)$ was monitored for assessing the grid convergence of the

CFD model

Table 1: Details of grids used for the grid independence study ($D_r \times H_r$ of 14 cm×4 cm)

Grid	Element size of impeller (m)	Number of elements	
Grid-1	0.004	300573	
Grid-2	0.0008	996072	
Grid-3	0.00035	4497937	
Grid-4	0.000258	7418360	
Grid-5	0.00024	8451837	

GRID INDEPENDENCE STUDY Contd.

Fig. 6: Variation of axial profile of $\frac{u_r}{u_{tip}}$ close to the impeller with grid resolution

GRID INDEPENDENCE STUDY Contd.

- Verification process:
 - $\frac{u_r}{u_{tip}}$ increases from Grid-1 to Grid-3 and becomes constant thereafter
 - Predictions from Grid-4 were found to be independent of grid resolution
 - Grid convergence Index of peak $\frac{u_r}{u_{tin}}$ is only 1.27%
- Validation process:
 - Accurate prediction of magnitude and location of peak $\frac{u_r}{u_{tip}}$
 - Predictions of $\frac{u_r}{u_{tip}}$ from Grid-4 are in excellent agreement with experimental results of Wu and Patterson (1989)
 - Present CFD model accurately predicts flow behaviour of standard stirred tank reactor

POSITION OF MRF BOUNDARY

- $\frac{D_r}{D}$ and $\frac{H_r}{D}$ were varied from near impeller region to the periphery of the stirred tank
- Effect of $\frac{D_r}{D}$ and $\frac{H_r}{D}$ on N_{pt} and $N_{p\varepsilon}$ were analysed
- Optimal $\frac{D_r}{D}$ and $\frac{H_r}{D}$ were selected by comparing the predictions of N_{pt} and $N_{p\varepsilon}$ with experimental results

MRF boundary extent	General limits for any geometry	Possible limits for the present study
D_r	$D < D_r < (T - 2B)$	9.3 cm < <i>D</i> _r < 21.6 cm
H_r	$h < H_r < 2h$	1.86 cm < <i>H</i> _r < 18 cm

Where
$$B = \frac{T}{10}$$
, $h = \frac{T}{3}$

□ Medium $\frac{D_r}{D}$ (1.51-1.94) and larger $\frac{H_r}{D}$ (>±0.22):

- ✤ Provides superior matching between N_{pt} -imp and N_{pt} -baff
- Proper transfer of impeller power towards tank periphery
- ✤ Produces accurate prediction of $N_{p\varepsilon}$
- Optimal MRF boundary

Smaller $\frac{D_r}{D}$ (1.05-1.29), smaller $\frac{H_r}{D}$ (0.22) and larger $\frac{D_r}{D}$ (2.04-2.26):

- ✤ Provides inadequate matching between N_{pt} -imp and N_{pt} -baff
- Improper transfer of impeller power towards tank periphery
- ✤ Inaccurate predictions of $N_{p\varepsilon}$

I Higher sensitivity of $\frac{D_r}{D}$ as compared to $\frac{H_r}{D}$

□ Medium $\frac{D_r}{D}$ and larger $\frac{H_r}{D}$ exist at suitable distance from the impeller which results in proper transformation of velocity fields at MRF boundary and accurate prediction of various flow field quantities

Generalized criterion for selecting optimal MRF boundary:

- ✤ Proper balance between N_{pt} -imp and N_{pt} -baff
- Based on principle of conservation of angular momentum
- Applied to any configuration of stirred tank reactor
- Optimal range of MRF extents from this study includes the MRF extents provided by Patil et al. (2021) and Zadravec et al. (2007)

Table 3: Comparison of errors related with N_{pt} and $N_{p\varepsilon}$ from the present study and that from other literature

Authors	Turbulence model	Error related with N_{pt} (%)	Error related with $N_{p\varepsilon}$ (%)	Energy imbalance
Singh et al. (2011)	Standard $k - \varepsilon$ model	14.00	2.00	10.53
	SAS-SST	38.00	4.00	24.64
	SSG-RSM	30.00	10.00	15.38
	SST-CC	32.00	10.00	31.82
Murthy and Joshi (2008)	Standard $k - \varepsilon$ model	3.92	23.53	20.41
	RSM	1.96	19.61	18.00
	LES	1.96	7.84	9.62
Present study	Standard $k - \varepsilon$ model	5.00	10.00	5.26

✓ CFD model with optimal MRF boundary significantly improves the predictive capability of standard $k - \varepsilon$ turbulence model

CONCLUSIONS

- A generalized criterion for determining the optimal position of MRF boundary was developed
- $\succ \frac{D_r}{D}$ and $\frac{H_r}{D}$ were varied in the entire domain of stirred tank reactor
- ▶ $\frac{D_r}{D}$ and $\frac{H_r}{D}$ close to the impeller and tank periphery were found to be unsuitable for modelling the stirred tank reactors
- Medium $\frac{D_r}{D}$ and larger $\frac{H_r}{D}$ were found to be appropriate for modelling the stirred tank reactors
- > Balance between N_{pt} -imp and N_{pt} -baff was determined as the generalized criterion
- > CFD model with optimal MRF boundary significantly improves the predictive capability of standard $k \varepsilon$ turbulence model

ACKNOWLEDGEMENTS

This study has been financed by the Science and Engineering Research Board (SERB) of Government of India (Grant number SB/S3/CEE/0057/2013)

REFERENCES

Agarwal A, Singh G, Prakash A (2021) Numerical investigation of flow behavior in double-rushton turbine stirred tank bioreactor, Materials Today: Proceedings, 43, 51-57

Alonzo-Garcia A, Mendoza-Escamilla VX, Martinez-Delgadillo SA (2019) On the performance of different rans based models to describe the turbulent flow in an agitated vessel using non-structured grids and PIV validation, Brazilian Journal of Chemical Engineering, 36, 361–382

Başbuğ S, Papadakis G, Vassilicos JC (2018) Reduced power consumption in stirred vessels by means of fractal impellers, AIChE Journal, 64, 1485–1499

Bates RL, Fondy PL, Corpstein RR (1963) Examination of Some Geometric Parameters of Im-peller Power, Indian Engineering Chemical Process Design and Development, 2, 310–314

Coroneo M, Montante G, Paglianti A, Magelli F (2011) CFD prediction of fluid flow and mixing in stirred tanks: Numerical issues about the RANS simulations, Computers & Chemical Engineering, 35, 1959–1968

Deglon DA, Meyer CJ (2006) CFD modelling of stirred tanks: Numerical considerations, Minerals Engineering, 19, 1059–1068

Delafosse A, Line A, Morchain J, Guiraud P (2008) LES and URANS simulations of hydrody-namics in mixing tank: Comparison to PIV experiments, Chemical Engineering Research and Design, 86, 1322–1330

Escudie R, Bouyer D, Line A (2004) Characterization of Trailing Vortices Generated by a Rushton Turbine. AIChE Journal 50(1): 75-86

Joshi JB, Nere NK, Rane CV (2011) CFD simulation of stirred tanks: Comparison of turbulence models. Part I: Radial flow impellers, Canadian Journal of Chemical Engineering, 89, 23–82

Luo JY, Issa RI, Gosman AD (1994) Prediction of impeller induced flows in mixing vessels using Multiple Frames of Reference. In: Eighth European Conference on Mixing. Institution of Chemical Engineers Symposium Series, pp 549–556

Montante G, Lee KC, Brucato A, Yianneskis M (2001) Numerical simulations of the dependency of flow pattern on impeller clearance in stirred vessels, Chemical Engineering Science, 56, 3751–3770

REFERENCES Contd.

Murthy BN, Joshi JB (2008) Assessment of standard k- ϵ , RSM and LES turbulence models in a baffled stirred vessel agitated by various impeller designs, Chemical Engineering Science, 63, 5468–5495

Norouzi-Firouz H, Sarrafzadeh MH, Zarghami R (2018) Investigating the Effect of Multiple Reference Frame Approach on the Modelling of an Oxidation Ditch, Lecture Notes in Civil Engineering, 12, 429–437

Oshinowo L, Jaworski Z, Dyster KN (2000) Predicting the tangential velocity field in stirred tanks using the Multiple Reference Frames (MRF) model with validation by LDA measure-ments. In: Tenth European Conference on Mixing. Elsevier, pp 281–288

Patil H, Patel AK, Pant HJ, Venu Vinod A (2021) CFD simulation model for mixing tank using multiple reference frame (MRF) impeller rotation, ISH Journal of Hydraulic Engineering, 27, 200–209

Remaki L, Ramezani A, Blanco JM, Garcia I (2017) New Simplified Algorithm for the Multiple Rotating Frame Approach in Computational Fluid Dynamics, Journal of Fluids Engineering, 139, 081104

Roache PJ (1994) Perspective: A Method for Uniform Reporting of Grid Refinement Studies, Journal of Fluids Engineering, 116, 405-413

Shi P, Rzehak R (2018) Bubbly flow in stirred tanks: Euler-Euler/RANS modeling, Chemical Engineering Science, 190, 419–435

Singh H, Fletcher DF, Nijdam JJ (2011) An assessment of different turbulence models for predicting flow in a baffled tank stirred with a Rushton turbine, Chemical Engineering Science, 66, 5976–5988

Wu H, Patterson GK (1989) Laser-Doppler measurements of turbulent-flow parameters in a stirred mixer, Chemical Engineering Science, 44, 2207–2221

Zadravec M, Basic S, Hribersek M (2007) The influence of rotating domain size in a rotating reference frame approach for simulation of rotating impeller in a mixing vessel. Journal of Engineering Science and Technology 2(2): 126-138

THANK YOU