40th International School of Hydraulics, Gdansk Poland

Fish Swimming Performance: effect of flume length and fatigue definitions

Muhammad Usama Ashraf

Correspondence: <u>muhammad_ashraf@polito.it</u>

C. Manes, C. Comoglio, D. Nyqvist, A. Marion & P. Domenici

RIBES

This project has received funding from the European Union Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie Actions, Grant Agreement No. 860800

Importance of Fish Swimming Performance

What is Fish Swimming Performance?

Time a fish can swim, under imposed flow conditions, until fatigued

Time to fatigue

 $T_f ≤ 20 \text{ sec (Burst)}$ 20 sec ≤ $T_f ≤ 200 \text{ minutes (Prolonged)}$ $T_f ≥ 200 \text{ minutes (Sustained)}$

Fish fatigued while being impinged/resting on the rear grid

What is Fatigue?

Reference	Fatigue definitions used
Romão et al. 2012	unable to remove itself from the grid despite 2 sec consecutive electric stimulation in a maximum 10 s period
Tudorache et al. 2010	Impinged against the downstream grid and did not move for <mark>3 sec</mark>
Peake and Farrell, 2006	fell against the downstream retaining screen of the respirometer for 5 sec, and could not be stimulated (by gentle prodding) to resume swimming
Karlsson-Drangsholt et al. 2018	stop swimming, despite encouraging the fish to move away from the grid by pinching the tail gently for 10 sec
Vezza et al. 2020	impinged on the downstream screen and ceased moving for more than 15 sec
Heuer et al. 2021	stopped at the end of the test area, lightly patted the downstream wall for 20 s and still could not swim

2 different fatigue definitions

Tapped fatigue

The time to fatigue defined as the fish refusing to swimming despite tapping it for 3 times as it stayed attached on the rear grid for ≥ 3 seconds.

Untapped Fatigue

The time to fatigue defined as the fish refusing to swimming while being attached to the rear grid for the first time for 5 seconds until the first tap.

Effect of flume length on swimming performance

Burst and coast:

An energy saving swimming technique to increase performance

Burst movements involve higher tail beat frequencies and amplitude

Flume length hinders:

Burst-and-coast behavior

From: Videler and Weihs, 1981

Question of interest

- Does flume length affect the fish swimming performance?
- Does the definition of fatigue influence fish swimming performance?

Experimental configurations

Mean low flow velocity ~ 35 cm/s

Mean high flow velocity ~ 45 cm/s 6 treatments with 10 fish each ~ A total of 60 fishes.

Survival Analysis

- Studying the time passed before some event occurs to one or more covariates that may be associated with that quantity of time
- Cox Proportional-Hazards Regression Model
- Kaplan-Meier fatigue curves

Results

3 key takeaways

- **1.** Fish Behavior Very Important
- 2. Fatigue is sensitive to its definition
- **3.** Flume length influence swimming behavior and performance

References

- Beamish, F. W. H. Fish Physiology. vol. 7 (Academic Press, London, 1978).
- Vezza, P., Libardoni, F., Manes, C., Tsuzaki, T., Bertoldi, W., & Kemp, P. S. (2020). Rethinking swimming
 performance tests for bottom-dwelling fish: The case of European glass eel (Anguilla anguilla). Scientific Reports,
 10(1), 16416. <u>https://doi.org/10.1038/s41598-020-72957-w</u>
- Romão, F., Quintella, B. R., Pereira, T. J., & Almeida, P. R. (2012). Swimming performance of two Iberian cyprinids: The Tagus nase Pseudochondrostoma polylepis (Steindachner, 1864) and the bordallo Squalius carolitertii (Doadrio, 1988): Critical swimming speed of two Iberian cyprinids. Journal of Applied Ichthyology, 28(1), 26–30. https://doi.org/10.1111/j.1439-0426.2011.01882.x
- Tudorache, C., O'Keefe, R. A., & Benfey, T. J. (2010). Flume length and post-exercise impingement affect anaerobic metabolism in brook charr Salvelinus fontinalis. Journal of Fish Biology, 76(3), 729–733. <u>https://doi.org/10.1111/j.1095-8649.2009.02513.x</u>
- Karlsson-Drangsholt, A., Svalheim, R. A., Aas-Hansen, Ø., Olsen, S.-H., Midling, K., Breen, M., Grimsbø, E., & Johnsen, H. K. (2018). Recovery from exhaustive swimming and its effect on fillet quality in haddock (Melanogrammus aeglefinus). *Fisheries Research*, 197, 96–104. <u>https://doi.org/10.1016/j.fishres.2017.09.006</u>
- Heuer, R. M., Stieglitz, J. D., Pasparakis, C., Enochs, I. C., Benetti, D. D., & Grosell, M. (2021). The Effects of Temperature Acclimation on Swimming Performance in the Pelagic Mahi-Mahi (Coryphaena hippurus). *Frontiers in Marine Science*, 8, 654276. <u>https://doi.org/10.3389/fmars.2021.654276</u>
- Peake, S. J., & Farrell, A. P. (2006). Fatigue is a behavioural response in respirometer-confined smallmouth bass. *Journal of Fish Biology*, 68(6), 1742–1755. https://doi.org/10.1111/j.0022-1112.2006.01052.x

Thank you

Any questions/comments?